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Numerical assignment 1 

 

As for calculations, the following is the method for calculating the 3 principle stresses in a thin 
walled pressure vessel: 

𝜎𝜑 =
𝑝𝑎

ℎ
  

𝜎𝑟 ≈ 0 

𝜀𝑧 = 0 

𝜀𝑧 =
1

𝐸
[𝜎𝑧 − 𝑣(𝜎𝜑 + 𝜎𝑟) = 0 

𝜎𝑧 = 𝑣
𝑝𝑎

ℎ
 

𝜎1 = 𝜎𝜑 , 𝜎2 = 𝜎𝑧 ,  𝜎3 = 𝜎𝑟 ≈ 0 

With these, the effective Von Mises stress can be calculated, 

𝜎𝑒
𝑉𝑀 =

1

√2
√(𝜎1 − 𝜎2)2 + (𝜎1 − 𝜎3)2 + (𝜎2 − 𝜎3)2 

= √𝜎𝜑
2 + 𝜎𝑧

2 − 𝜎𝜑𝜎𝑧 

=
𝑝𝑎

ℎ
√1 − 𝑣 + 𝑣2 

=
1𝑀𝑃𝑎 ∗ 50𝑚𝑚

1𝑚𝑚
√1 − 0.3 + 0.32 

= 44.44 𝑀𝑃𝑎 

For the pipe, a simple 100 mm long, 100 mm diameter and 1 mm wall thickness pipe was 
designed. The vessel was in the simulation tool clamped between to walls and a 1 MPa 
pressure was applied along the inside. 



 

 

By probing the middle section of the pipe, an average of 45.04 MPa was measured. This value 
was very close to the theoretical solution. Where it does differ is at the maximum measured 
values, which in the simulation measured up to 58.36 MPa, much higher than the theoretical 
solution. These high stress points were found at the edges of the pipe and may lead to failure if 
not taken in to account while designing the pipe.  



 

Numerical assignment 2 

 

  



 

First, using simulation to find the largest von mises stress: 

 

If a 100kg person sits on the chair, the largest von mises effective stress is 151 MPa. If the 
strength of the material is 80 MPa, the maximum safe force would be 550N, which translates to  
56 kg. The failure would occur first at either side of the bottom half, shown in red. 

  



 

When halving the thickness of the chair, the largest safe force is 125N. that is equivalent to 
12.73 kg 

 
 

 

 

  



 

It is obvious where the largest load is when using the Design Insight tool. Meanwhile, the 
loading on the non-blue marked area is close to none. By reinforcing the area experiencing all of 
the load, the rest of the chair can remain with a thickness of 2.5mm.  

 

 



 

 

which brings down the weight from 3134g to 2202g, 70% of the original value 



 

Numerical assignment 3 
  



 

By applying the dimensions given from the assignment instructions, the following main sketch 
is drawn. This is what will be used as a guide for each individual tube. 

 

 

The main frame was created by using the sweep tool, creating pipes that are 20mm wide in 
diameter with 2mm thick walls. Exception to this is the supporting frames for the back wheel, 
which are 14mm wide in diameter (but still 2mm thick). 



 

 

 

The steering wheel frame is added, also using the sweep tool with pipes that are 20 mm wide in 
diameter and 2mm thickness. 

  



 

By applying the rear wheel attachment as a fixed point, the front wheel attachment as a roller 
condition and by adding three points of load as shown by the instructions, a strength analysis 
can be performed. The points of load are defined as vertical forces distributed as: 

𝑚 = 150 𝑘𝑔 

𝑃1 = 0.4𝑚 

𝑃2 = 0.3𝑚 

𝑃3 = 0.3𝑚 

 

 

This will be used as a starting point, from which an attempt will be made to improve the design 
so that it can withstand the load, while minimizing mass. The current mass is 1240 g. 



 

 

To clarify from the strength analysis, in the current design there are several points on the frame 
where the effective von mises stress is higher than the materials yield stress of 𝜎𝑓 = 80𝑀𝑃𝑎. 
But large parts of the frame have an effective stress far below yielding, where material can be 
removed. 

By analyzing where the stress is concentrated in the frame, and by using the solid works tool 
Design Insight,  points of concentrated stress can be identified. As can be seen in the figure 
below those points are the front wheel frame and it’s connection to the main frame. 

 

The highest stress concentration comes from sharp edges, these are dealt with by rounding the 
sharp edges with fillets. Fillets would come during production from welding the pipes together.  

  



 

At the front wheel, where the steering handle meets the front wheel support, is one of the spots 
that need to be strengthened to withstand the load. This is done by thickening the the section 
with 2 additional millimeters in wall thickness. In hindsight, this would be challenging to 
manufacture, making the whole front wheel frame thicker would be more honest from the 
standpoint of Design for Manufacturing. 

 

 



 

 

these changes, at the cost of adding 15 grams to the mass, make it so that the frame can 
withstand the load without reaching the yielding of 80 MPa, with the total mass being 1255g. 

By using an ellipse shaped tube instead of a circular pipe in the main frame, can strengthen the 
pipe as the loading is along the x-y plane, with no or minimal load in the z-direction. By letting 
the ellipse tube have an increased height, but decreased width, the tube may be strong enough 
that the tube walls can be thinner while still maintaining enough strength.  

By changing the chape to an ellipse, 10mm width and 20 mm height, the wall thickness can be 
halved to 1mm. This was first applied to the bottom and upper tube, shown by the arrows in the 
following figure. This decreased the mass down to 796 grams. 

 

  



 

Also applied was a slight angle between the connection of the main frame and the front. The 
idea was to compensate for the load that can be seen on the top side of the upper tube, and the 
bottom side of the lower tube. This proved to be a positive change, and is very much doable in a 
manufacturing perspective, by simply bending the tubes.  

 

 

This ellipse shape of tubing was also applied to the tubes at the front, a similar 20mm height, 
10mm wide shape with a 2mm wall thickness was found to be strong enough to withstand the 
load, while also bringing the mass down to 693 grams. 

 



 

Here is a picture of the final designs simulation, with a maximum effective stress of 
65.19 MPa. The final weight of the frame is 693 grams.  

 

  



 

Numerical assignment 4 
  



 

For numerical assignment 4, the plate was created simply with an extrude. The width was 
chosen to be 100mm, so the other dimensions per the assignment instructions became: 

𝑊 = 100 𝑚𝑚 

𝐻 = 2𝑊 = 200 𝑚𝑚 

𝑎 =
𝑊

10
= 10 

𝑏 = {10, 5, 2.5, 0} 

The values of the elastic properties E and v were set to 70 GPa and 0.3 respectively. 

The model was created by extruding the shape with a depth of 1 mm (z-direction), but because 
the simulations will be simplified per the instructions to assume place condition applies, the 
depth will be made not impact the results. The whole was created with a simple cut centered in 
the middle of the plate, 2a wide and 2b high. 

 

The simulation was set up as a 2D simplification, to achieve plane conditions and simulation on 
a 2D shape. A pressure of 100 N/m2 was applied as 𝜎0 on the bottom and the top side of the 
plate (y-direction) 

 

Part 1 
Analyze the problem with FEM and examine how the stress 𝜎𝑦varies along the width of the plate, 
from the tip of the ellipse to the edge of the plate. 

From the instructions, the stress in the loading direction is approximately the following: 



 

𝜎𝑦 = 𝜎0(1 + 2√𝑎/𝜌) 

𝜌 =
𝑏2

𝑎
 

and for the different values of b, the following approximations can be calculated: 

a b 𝜎0 𝜎𝑦 
20 20 100 300 
20 10 100 500 
20 5 100 900 
20 0 100 Towards infinity 

 

Each case for each value of b will now be simulated and shown along with a graph that 
measures the stress along the x-axis using 50 evenly distributed points from the tip of the 
ellipse to the edge of the plate. The distance between the tip of the ellipse and the edge of the 
plate is 40 mm, that means each point is spaced 0.8 mm from each other This graph will help 
with analyzing how the stress varies.   



 

Case 1: 
a = b= 10 mm, where the maximum simulated von Mises stress reached 315 Pa, compared to 
the calculated and approximate 300 Pa. 

 

 

As can be seen on the graph, the stress is the highest closest to the ellipse, and quickly falls off 
the closer it reaches the edge of the plate, furthest away from the ellipse. 



 

Case 2 

a = 2b, a = 10 mm and b = 5 mm. The maximum simulated von Mises stress reached 495.4 Pa, 
compared to the calculated and approximate 500 Pa 

 

note: this graph only contains 20 points evenly distributed 2 mm apart. This was a mistake that 
was noticed too late. The purpose of the graph, to analyze the varying stress, is still fulfilled. 



 

 

Case 3 

a = 4b, a = 10 mm and b = 2.5 mm. The maximum simulated von Mises stress reached 847.9 Pa, 
compared to the calculated and approximate 900 Pa 

 

  



 

Case 4 

 a = 10 mm and b = 0. The maximum simulated von Mises stress reached 2332 N/m2, whereas 
the formula for the approximation contains a division by zero which means that the maximum 
stress would go towards infinity. Because of how meshing works, SolidWorks has to assume a 
certain size, even though you may limit that mesh size to say 0.01mm2 cubes, it can never be 
zero and therefore the max stress will not reach values close to infinity. 

 

 



 

Thoughts and conclusion for part 1: 
It does appear that as the value of b decreases which means the ellipse height decreases, the 
stress 𝜎𝑦 gets more concentrated closer to the tip of the ellipse. The decrease of the value b 
also shows a change in the gradient and how quickly the stress falls off. This can be seen by 
comparing the graph of Case 1 when a = b, compared to the Case 4 when b = 0, where in the 
latter the line looks almost vertical. This shows how a larger but round hole/defect can be more 
safe compared to a much smaller crack (as in Case 4), which can have a much higher 
concentration of the load and hence be more prone to failure. 

 

Part 2  
Determine approximately the failure moment for the four cases and discuss the results. 
Particularly, discuss if the failure criterion is still applicable to the case of a crack 

The material has an Elasticity modulus of 7*1010 Pa. According to the instructions, the yield 
strength is given by the following: 

𝜎𝑓 = 0.005𝐸 

This would make the failure point at 3.5e+8 Pa, or 350 MPa. 

𝜎𝑦 = 𝜎𝑓 → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

Using the previously used analytical solution to approximate the stress at the tip of an ellipsoid,  

𝜎𝑦 = 𝜎0(1 + 2√𝑎/𝜌) 

We can approximate the loading 𝜎0 needed to achieve failure, 

→ 𝜎0 =
𝜎𝑦

(1 + 2√𝑎/𝜌) 
 

so for failure, if 𝜎𝑦 = 𝜎𝑓:  

𝜎0 =
𝜎𝑓

(1 + 2√𝑎/𝜌) 
 

𝜌 =
𝑏2

𝑎
 

using this along with the calculated yield strength 350 MPa, the following table is calculated 
which shows the approximated loads for failure: 

b/a ratio 𝜎0 
1 116.67 MPa 

 

0.5 70 MPa 
0.25 38.89 MPa 

0 Towards 0 Pa 
 

When inputting these values in each respective simulation, the following four cases happen:  



 

Case 1 

a = 10 mm, b = 10 mm. The approximated load needed for failure, 116.67 MPa, led to failure, as 
the highest recorded effective von Mises stress was 367.1 MPa compared to the 350 MPa 
needed for yielding and failure. 

 

By instead applying 𝜎0 with a value of 111 MPa the resulting maximum stress was 349.3 MPa, 
very close to the failure moment. That means that the approximated value 116.67 was over 5% 
than what was needed by simulation 

  



 

Case 2 

a = 10 mm, b = 5 mm. The approximated load needed for failure, 70 MPa, did not lead to failure, 
as the highest recorded effective von Mises stress was 343.6 MPa compared to the 350 MPa 
needed for yielding and failure. 

 

while 71.3 MPa gave a resulting maximum stress of 350.0 MPa. The approximated value was 
very close to the simulated load needed for failure. The approximation was an underestimation 
this time. 

  



 

Case 3 

a = 10mm and b = 2.5mm. The approximated load needed for failure, 38.89 MPa, did not lead to 
failure, as the highest recorded effective von Mises stress was 329.9 MPa compared to the 350 
MPa needed for yielding and failure. 

 

Using 41.2MPa during simulation gave a maximum recorded stress of 349.5 MPa, very close to 
the needed for failure, with 41.2MPa being close to 6 % of the approximate value 38.89. 

  



 

Case 4 

a = 10mm, b = 0. Here, as the ellipsoid is 0 in height and therefore a perfect crack, the stress is 
even more concentrated at the tips of the crack. With the approximation formula, any value of 
𝜎0 would result in a stress of infinity. This Is impossible to achieve, as there will always be some 
sort of height, how small that may be. Below, through a simulation with the smallest mesh size 
that the used computer could handle and calculate, 15 MPa was enough for failure. The limiting 
factor here is the mesh size during simulation. The smaller the mesh size, the higher the stress 
concentration at the points of the edges. This does show how the failure criterion is not 
applicable, or at least not suitable, for a crack with an infinitely small height/width like this case 
of b = 0 mm. 

 

 


